
Assignment 3
Answer Key

2023-12-12

Questions

1. Carpenter and Dobkin (2011) study the effect of the legal drinking age in the United States
on public health outcomes. They use a Regression Discontinuity Design where the running
variable is age, and the cutoff is the legal drinking age of 21. In the dataset a3data1.csv,
the outcomes are all (all deaths), alcohol (alcohol-related deaths), and mva (motor vehicle
accident deaths) measured in deaths per 100,000 people. The variable agecell is the average
age for that set of people.

Plot separate scatterplots of each of the three outcomes against age. In each graph, make sure
the axes are labelled appropriately, there is an informative title, and the cutoff is marked with
a vertical line. Comment on the plots and explain what you see.

In the plot of all deaths, the relationship with age is upward sloping and there is a clear jump
in the number of deaths at age 21. For alcohol-related deaths, there is also an upward sloping
relationship, but the jump at age 21 is not clearly visible. Finally, for motor vehicle deaths,
the relationship with age is negative, but there is a jump up at the age of 21. All of this
suggests that the minimum drinking age has some effect on mortality.

data <- read_csv("a3data1.csv") %>%
filter(!is.na(all))

Rows: 50 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: ","
dbl (4): agecell, all, alcohol, mva

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
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ggplot(data, aes(x = agecell, y = all)) +
geom_point() +
geom_vline(xintercept = 21, linetype = "dashed") +
labs(x = "Age", y = "Deaths per 100,000", title = "All Deaths") +
theme_pander(nomargin = FALSE, boxes = TRUE)

90

95

100

105

19 20 21 22 23
Age

D
ea

th
s 

pe
r 

10
0,

00
0

All Deaths

ggplot(data, aes(x = agecell, y = alcohol)) +
geom_point() +
geom_vline(xintercept = 21, linetype = "dashed") +
labs(x = "Age", y = "Deaths per 100,000", title = "Alcohol Deaths") +
theme_pander(nomargin = FALSE, boxes = TRUE)
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ggplot(data, aes(x = agecell, y = mva)) +
geom_point() +
geom_vline(xintercept = 21, linetype = "dashed") +
labs(x = "Age", y = "Deaths per 100,000", title = "Motor Vehicle Deaths") +
theme_pander(nomargin = FALSE, boxes = TRUE)
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2. Create a treatment variable called mlda that equals 1 when age is greater than or equal to
21, and zero otherwise. Using the outcome all, estimate the following regressions: a) a simple
OLS regression of the outcome on mlda, b) regression discontinuity model that is linear in
age with the same slope on both sides of the cutoff, c) regression discontinuity model that is
linear in age with different slopes on each side of the cutoff, d) regression discontinuity model
that is quadratic in age with different slopes on each side of the cutoff. Report the results
in a professional-looking output table using the modelsummary package. Comment on the
results.

In the most basic model, it appears that across the cutoff deaths increase by about 5 per
hundred-thousand when people turn 21. This is consistent as we make the model more flex-
ible, though the size of the coefficient increases gradually to about 9.5 deaths per hundred-
thousand.

data %<>% mutate(mlda = ifelse(agecell >= 21, 1, 0)) %>%
mutate(magecell = agecell - 21)

model1 <- feols(all ~ mlda,
data = data, vcov = "HC1")

model2 <- feols(all ~ magecell + mlda,
data = data, vcov = "HC1")

model3 <- feols(all ~ magecell + mlda + magecell*mlda,
data = data, vcov = "HC1")
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Model A Model B Model C Model D
(Intercept) 92.803*** 91.841*** 93.618*** 93.073***

(0.487) (0.709) (0.628) (0.780)
mlda 5.740*** 7.663*** 7.663*** 9.548***

(0.730) (1.514) (1.273) (1.830)
magecell −0.975 0.827 −0.831

(0.664) (0.721) (2.850)
magecell × mlda −3.603** −6.017

(1.124) (4.528)
−0.840
(1.541)

mlda × I(magecell^2) 2.904
(2.257)

Num.Obs. 48 48 48 48
R2 0.573 0.595 0.668 0.682
RMSE 2.48 2.41 2.19 2.14
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

model4 <- feols(all ~ magecell + mlda + magecell*mlda + I(magecell^2) +
I(magecell^2)*mlda, data = data, vcov = "HC1")

modelsummary(list("Model A" = model1, "Model B" = model2, "Model C" = model3,
"Model D" = model4),

gof_omit = "IC|Log|Adj|p\\.value|statistic|F|Std",
stars = TRUE)

3. Plot the predicted values from (c) and (d) on top of a scatterplot of the data for the all
outcome. Make sure the axes are labelled appropriately, there is an informative title, and the
cutoff is marked with a vertical line. Explain which model fits the data better and why.

Based on an eyeball comparison, both seem to fit the data fairly well given how widely spread
out the data are, and in reality it doesn’t matter because they produce similar estimates of
the coefficient.

# add legend labels

ggplot(data, aes(x = agecell, y = all)) +
geom_point() +
geom_vline(xintercept = 21, linetype = "dashed") +
labs(x = "Age", y = "Deaths per 100,000", title = "All Deaths with Predicted Values") +
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theme_pander(nomargin = FALSE, boxes = TRUE) +
geom_line(aes(x = agecell, y = predict(model3)),

color = "red", size = 1.5, alpha = 0.6) +
geom_line(aes(x = agecell, y = predict(model4)),

color = "blue", size = 1.5, alpha = 0.6) +
annotate("text", x = 21.7, y = 100, label = "Model C", color = "red") +
annotate("text", x = 22, y = 97.25, label = "Model D", color = "blue")

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.
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4. The Regression Discontinuity method requires that the untreated potential outcome is
continuous across the cutoff. Explain what this means in the context of the Carpenter and
Dobkin (2011) study. Do you think this assumption is reasonable? Why or why not?

The treatment here is being legally allowed to drink alcohol, which occurs when people are 21
years or over. The untreated potential outcome is the number of deaths that would occur if
people were not allowed to drink alcohol, and we have to assume this would increase continu-
ously if people were not allowed to drink when they turn 21. I think this is a very reasonable
assumption to make, in particular because there are no obvious other things that change when
people turn 21 that would affect the number of deaths.
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5. We will now examine the effects of the minimum legal drinking age on deaths using a
Difference in Differences framework. In 1975, the state of Alabama changed its legal drinking
age from 21 to 19, while many other states kept their legal drinking age at 21. The data
a3data2.csv contains information for Alabama and several other states over the years 1970
to 1985, and we would like to use this to estimate the effect of the change in the legal drinking
age on deaths, as measured by mortality rates.

Plot the time series of mortality rates for all states in the data on the same graph. Make sure
the axes are labelled appropriately, there is an informative title, and the time period where
the policy change occurs is marked with a vertical line. Comment on the general patterns and
trends in the data, and whether you think there is any obvious effect of the Alabama policy.

Mortality rates are clearly on the decline across states, and there is no obvious effect of the
Alabama policy change. The good news is that states appear to have similar trends prior to
the policy change, so there is a good chance that difference in differences would work.

data2 <- read_csv("a3data2.csv")

Rows: 208 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (1): statename
dbl (3): year, state, mrate

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

ggplot(data2, aes(x = year, y = mrate, color = as.factor(statename))) +
geom_line(size = 1.5, alpha = 0.6) +
geom_vline(xintercept = 1975, linetype = "dashed") +
labs(x = "Year", y = "Mortality Rate", title = "Mortality Rates by State") +
theme_pander(nomargin = FALSE, boxes = TRUE) +
scale_color_discrete(name = "State")
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6. Estimate the following regressions: a) a simple OLS regression of the mortality rate on a
dummy for Alabama, b) a difference in differences specification with a dummy for Alabama, a
dummy for the time period after treatment, and the interaction; c) a difference in differences
specification a full set of state dummies, a full set of time dummies, and the same interaction
from (b). Report the results in a professional-looking output table using the modelsummary
package. Comment on the results.

In model A if we simply estimate the treatment effect in the absense of a difference in differences
specification, there is some downward bias in the results. Once we use the other states as a
control group, the effect is roughly 0.93, which means that deaths per million people increase
by about 1 person. The effect is not statistically different from zero.

data2 %<>% mutate(after = ifelse(year >= 1975, 1, 0),
alabama = ifelse(statename == "Alabama", 1, 0))

model5 <- feols(mrate ~ alabama, data = data2, vcov = "HC1")
model6 <- feols(mrate ~ alabama*after,

data = data2, vcov = "HC1")
model7 <- feols(mrate ~ alabama:after | statename + year,

data = data2, vcov = "HC1")

modelsummary(list("Model A" = model5, "Model B" = model6, "Model C" = model7),
gof_omit = "IC|Log|Adj|p\\.value|statistic|F|Std",
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Model A Model B Model C
(Intercept) 136.969*** 155.289***

(2.862) (5.876)
alabama −2.928 −3.569

(5.303) (6.982)
after −26.648***

(6.572)
alabama × after 0.931 0.931

(8.826) (5.737)
Num.Obs. 208 208 208
R2 0.000 0.104 0.858
R2 Within 0.000
RMSE 38.24 36.20 14.41
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

stars = TRUE)

7. Estimate an “event study” regression where you include a full set of state dummies, a full
set of time dummies, and an interaction between the Alabama dummy and all of the time
period dummies except the one for 1974. Plot the results using iplot. Comment on whether
the requirements for Difference in Differences to estimate a causal effect are met.

model8 <- feols(mrate ~ i(year, alabama, "1974") | statename + year,
data = data2, vcov = "HC1")

iplot(model8, pt.join = TRUE)
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It looks like there is a big dip in the mortality rate in Alabama relative to other states just
before the treatment in 1973, which could cause issues with the common trends assumption.
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